Part Number Hot Search : 
80C32 WTU1333 CFU1001V K1V10 103KT AVF150 C1963P 7C340
Product Description
Full Text Search
 

To Download TK711XX Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TK711XX
NOT RECOMMENDED FOR NEW DESIGNS FEATURES
s s s s s s Low Dropout Voltage Low Quiescent Current Very Stable Output Short Circuit Protected Thermal Overload Protected Standard TO-92 Package
LOW DROPOUT REGULATOR APPLICATIONS
s s s s s s s Battery Powered Systems Portable Consumer Equipment Cordless Telephones Personal Communications Equipment Radio Control Systems Toys Low Voltage Systems
DESCRIPTION
TK711XX The TK711XX is a low dropout, linear regulator housed in a standard TO-92 package, rated at 500 mW. An internal PNP transistor is used to achieve a low dropout voltage of 100 mV (typ.) at 30 mA load current. The TK711XX has a low quiescent current of 130 A (typ.) at no load. The low quiescent current and dropout voltage make this part ideal for battery powered applications.
15 0
1 2
3
PIN 1. OUTPUT 2. GROUND 3. INPUT
ORDERING INFORMATION
TK711
Tape/Reel Code VoltageCode VOLTAGE CODE
20 = 2.0 V 25 = 2.5 V 30 = 3.0 V 33 = 3.3 V 35 = 3.5 V 40 = 4.0 V 45 = 4.5 V 50 = 5.0 V
VIN
BLOCK DIAGRAM
VOUT
TAPE/REEL CODE
NT: Tape Left
THERMAL PROTECTION
BANDGAP REFERENCE GND
July 2000 TOKO, Inc.
Page 1
TK711XX
ABSOLUTE MAXIMUM RATINGS
Input Voltage ............................................................ 15 V Power Dissipation (Note 1) ................................ 500 mW Operating Voltage Range ............................... 1.4 to 14 V Junction Temperature ........................................... 150 C Storage Temperature Range ................... -55 to +150 C Operating Temperature Range ................... -20 to +75 C Lead Soldering Temperature (10 s) ...................... 235 C
TK71120 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 3 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient VIN = 3.0 V, IOUT = 30 mA VIN = 3.0 to 13.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA TEST CONDITIONS VIN = 3.0 V, IOUT = 0 mA VIN = 1.9 V, IOUT = 0 mA VIN = 3.0 V, IOUT = 10 mA IOUT = 30 mA 100 1.9 MIN TYP 130 1.4 2.0 100 160 1.5 10 20 63 0.15 3.5 30 40 MAX 300 3.0 2.1 200 UNITS A mA V mV mA mA mV mV dB mV/ C
Note 1: Power dissipation is 500 mW when mounted. Derate at 4 mW/C for operation above 25 C.
Page 2
July 2000 TOKO, Inc.
TK711XX
TK71125 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 3.5 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T
PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient
TEST CONDITIONS VIN = 3.5 V, IOUT = 0 mA VIN = 2.0 V, IOUT = 0 mA VIN = 3.5 V, IOUT = 10 mA IOUT = 30 mA
MIN
TYP 130 1.4
MAX 300 3.0 2.6 200
UNITS A mA V mV mA
2.4
2.5 100
100 VIN = 3.5 V, IOUT = 30 mA VIN = 3.5 to 13.5 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA
160 1.5 10 20 63 0.15 3.5 30 40
mA mV mV dB mV/ C
TK71130 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 4.0 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient VIN = 4.0 V, IOUT = 30 mA VIN = 4.0 to 14.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA TEST CONDITIONS VIN = 4.0 V, IOUT = 0 mA VIN = 2.5 V, IOUT = 0 mA VIN = 4.0 V, IOUT = 10 mA IOUT = 30 mA 100 2.9 MIN TYP 130 1.4 3.0 100 160 1.5 10 20 63 0.18 3.5 30 40 MAX 300 3.0 3.1 200 UNITS A mA V mV mA mA mV mV dB mV/ C
July 2000 TOKO, Inc.
Page 3
TK711XX
TK71133 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 3.9 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T
PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient
TEST CONDITIONS VIN = 3.9 V, IOUT = 0 mA VIN = 2.8 V, IOUT = 0 mA VIN = 3.9 V, IOUT = 10 mA IOUT = 30 mA
MIN
TYP 130 1.4
MAX 300 3.0 3.4 200
UNITS A mA V mV mA
3.2
3.3 100
100 VIN = 3.9 V, IOUT = 30 mA VIN = 3.9 to 13.9 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA
160 1.5 10 20 63 0.18 3.5 30 40
mA mV mV dB mV/ C
TK71135 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 4.1 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient VIN = 4.1 V, IOUT = 30 mA VIN = 4.1 to 14.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA TEST CONDITIONS VIN = 4.1 V, IOUT = 0 mA VIN = 3.0 V, IOUT = 0 mA VIN = 4.1 V, IOUT = 10 mA IOUT = 30 mA 100 3.39 MIN TYP 130 1.4 3.50 100 160 1.5 10 20 63 0.2 3.5 30 40 MAX 300 3.0 3.61 200 UNITS A mA V mV mA mA mV mV dB mV/ C
Page 4
July 2000 TOKO, Inc.
TK711XX
TK71140 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 4.6 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient VIN = 4.6 V, IOUT = 30 mA VIN = 4.6 to 14.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA TEST CONDITIONS VIN = 4.6 V, IOUT = 0 mA VIN = 3.5 V, IOUT = 0 mA VIN = 4.6 V, IOUT = 10 mA IOUT = 30 mA 100 3.88 MIN TYP 130 1.4 4.00 100 160 1.5 10 20 63 0.2 3.5 30 40 MAX 300 3.0 4.12 200 UNITS A mA V mV mA mA mV mV dB mV/ C
TK71145 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 5.1 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient VIN = 5.1 V, IOUT = 30 mA VIN = 5.1 to 14.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA TEST CONDITIONS VIN = 5.1 V, IOUT = 0 mA VIN = 4.0 V, IOUT = 0 mA VIN = 5.1 V, IOUT = 10 mA IOUT = 30 mA 100 4.36 MIN TYP 130 1.4 4.50 100 160 1.5 10 20 63 0.25 3.5 30 40 MAX 300 3.0 4.64 200 UNITS A mA V mV mA mA mV mV dB mV/ C
July 2000 TOKO, Inc.
Page 5
TK711XX
TK71150 ELECTRICAL CHARACTERISTICS
Test Conditions: VIN = 5.6 V, TA = 25 C, unless otherwise specified.
SYMBOL IQ VOUT VDROP IOUT IGND Line Reg Line Reg RR VOUT /T
PARAMETER Quiescent Current Regulated Output Voltage Dropout Voltage Output Current Ground Current Line Regulation Load Regulation Ripple Rejection Temperature Coefficient
TEST CONDITIONS VIN = 5.6 V, IOUT = 0 mA VIN = 4.0 V, IOUT = 0 mA VIN = 5.6 V, IOUT = 10 mA IOUT = 30 mA
MIN
TYP 130 1.4
MAX 300 3.0 5.15 200
UNITS A mA V mV mA
4.85
5.00 100
100 VIN = 5.6 V, IOUT = 30 mA VIN = 5.6 to 14.0 V IOUT = 1 to 60 mA CL = 3.3 F, f = 400 Hz, IOUT = 10 mA
160 1.5 10 20 63 0.25 3.5 30 40
mA mV mV dB mV/ C
Gen Note: Parameters with min. or max. values are 100% tested at TA = 25 C.
Page 6
July 2000 TOKO, Inc.
TK711XX
TEST CIRCUIT
IN
VIN GND
VOUT
+ VIN 0.1 F
+ 3.3 F IOUT VOUT
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25 C, unless otherwise specified.
GROUND CURRENT VS. AMBIENT TEMPERATURE 5 4 IOUT = 60 mA OUTPUT VOLTAGE VS. INPUT VOLTAGE 50 30
DROPOUT VOLTAGE VS. AMBIENT TEMPERATURE 500 400 VDROP (mV) 300 IOUT = 60 mA 200 100 0 -50
VOUT (mV)
10 -10 -30 -50 0 10 VIN (V) 20
IGND (mA)
3 2 1 0 -50 IOUT = 30 mA
IOUT = 30 mA 0 TA (C) 50 100
0 TA (C)
50
100
NOISE SPECTRUM -50 IOUT = 30 mA
RIPPLE REJECTION VS. FREQUENCY 0 CL = 1 F
LINE TRANSIENT RESPONSE
VOUT(TYP) + 2 V
VOUT (20 mV / DIV)
VIN VOUT
VOUT(TYP) + 1 V
NOISE (dB)
-100
CL = 3.3 F
RR (dB)
-50 CL = 10 F
INSTRUMENT NOISE FLOOR
-150 0 500 FREQUENCY (kHz) 1000
-100 100
1k
10 k
100 k TIME (50 s / DIV)
FREQUENCY (Hz)
July 2000 TOKO, Inc.
Page 7
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified.
GROUND CURRENT VS. OUTPUT CURRENT 10 8
0 mA
VOUT(TYP) + 1 V
LOAD TRANSIENT RESPONSE IOUT = 30 mA
VOUT (400 mV / DIV) IOUT
OUTPUT VOLTAGE VS. INPUT VOLTAGE
VOUT (50 mV / DIV)
IGND (mA)
30 mA IOUT = 0 mA 60 mA
VOUT
6 4 2
CL = 3.3 F
CL = 1.0 F
VIN = VOUT
0 0
TIME (50 s / DIV)
50 IOUT (mA)
QUIESCENT CURRENT VS. INPUT VOLTAGE
100 VIN (100 mV / DIV) OUTPUT CURRENT VS. AMBIENT TEMPERATURE 150
IOUT = 0 mA
TK71120
OUTPUT VOLTAGE VS. OUTPUT CURRENT 2.05
2
2.00
1
IOUT (mA)
VOUT (V)
IQ (mA)
100
1.95 0
0
50 IOUT (mA)
DROPOUT VOLTAGE VS. OUTPUT CURRENT
100
0
5 VIN (V)
10
50 -50
0 TA (C)
50
100
SHORT CIRCUIT PROTECTION 5 4
2.05
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE
500 400
VDROP (mV)
VOUT (V)
300 200 100 0 0 50 IOUT (mA) 100
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
2.00
1.95 -50
0 TA (C)
50
100
Page 8
July 2000 TOKO, Inc.
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified.
QUIESCENT CURRENT VS. INPUT VOLTAGE 2 150 IOUT = 0 mA
IOUT (mA)
VOUT (V) IQ (mA)
TK71125
OUTPUT VOLTAGE VS. OUTPUT CURRENT 2.55 OUTPUT CURRENT VS. AMBIENT TEMPERATURE
2.50
1
100
2.45 0
0 50 IOUT (mA)
DROPOUT VOLTAGE VS. OUTPUT CURRENT
100
0
5 VIN (V)
10
50 -50
0 TA (C)
50
100
SHORT CIRCUIT PROTECTION 5 4
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE 2.55
500 400
VDROP (mV)
VOUT (V)
300 200 100 0 0 50 IOUT (mA) 100
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
2.50
2.45 -50
0 TA (C)
50
100
TK71130
OUTPUT VOLTAGE VS. OUTPUT CURRENT 3.05 2 150 IOUT = 0 mA QUIESCENT CURRENT VS. INPUT VOLTAGE OUTPUT CURRENT VS. AMBIENT TEMPERATURE
3.00
1
IOUT (mA)
VOUT (V)
IQ (mA)
100
2.95 0
0 50 IOUT (mA) 100 0 5 VIN (V) 10
50 -50
0 TA (C)
50
100
July 2000 TOKO, Inc.
Page 9
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified. TK71130 (CONT.)
DROPOUT VOLTAGE VS. OUTPUT CURRENT 500 400
VDROP (mV)
5 4 SHORT CIRCUIT PROTECTION
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE 3.05
300 200 100 0 0 50 IOUT (mA) 100
VOUT (V)
3 2 1 0 0 100 IOUT (mA)
QUIESCENT CURRENT VS. INPUT VOLTAGE 2
VOUT (V)
3.00
200
2.95 -50
0 TA (C)
50
100
TK71133
OUTPUT VOLTAGE VS. OUTPUT CURRENT 3.35 OUTPUT CURRENT VS. AMBIENT TEMPERATURE 150
IOUT = 0 mA
3.30
1
IOUT (mA)
VOUT (V)
IQ (mA)
100
3.25 0
50 IOUT (mA)
100
0 0 5 VIN (V) 10
50 -50
0 TA (C)
50
100
DROPOUT VOLTAGE VS. OUTPUT CURRENT 500 400
SHORT CIRCUIT PROTECTION 5 4
3.35
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE
VDROP (mV)
VOUT (V)
300 200 100 0 0 50 IOUT (mA) 100
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
3.30
3.25 -50
0 TA (C)
50
100
Page 10
July 2000 TOKO, Inc.
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified.
QUIESCENT CURRENT VS. INPUT VOLTAGE 2 150 IOUT = 0 mA
IOUT (mA)
VOUT (V)
TK71135
OUTPUT VOLTAGE VS. OUTPUT CURRENT 3.55 OUTPUT CURRENT VS. AMBIENT TEMPERATURE
3.50
IQ (mA)
1
100
3.45 0
0 50 IOUT (mA) DROPOUT VOLTAGE VS. OUTPUT CURRENT 100 0 5 VIN (V) 10
50 -50
0 TA (C)
50
100
SHORT CIRCUIT PROTECTION 5 4
VOUT (V)
3.55
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE
500 400
VDROP (mV)
300 200 100 0 0 50 IOUT (mA) 100
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
3.50
3.45 -50
0 TA (C)
50
100
TK71140
OUTPUT VOLTAGE VS. OUTPUT CURRENT 4.05 2 150 IOUT = 0 mA QUIESCENT CURRENT VS. INPUT VOLTAGE OUTPUT CURRENT VS. AMBIENT TEMPERATURE
4.00
1
IOUT (mA)
VOUT (V)
IQ (mA)
100
3.95 0
0 50 IOUT (mA) 100 0 5 VIN (V) 10
50 -50
0 TA (C)
50
100
July 2000 TOKO, Inc.
Page 11
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified. TK71140 (CONT.)
DROPOUT VOLTAGE VS. OUTPUT CURRENT 500 400
VDROP (mV)
5 4 SHORT CIRCUIT PROTECTION
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE 4.05
300 200 100 0 0 50 IOUT (mA) 100
VOUT (V)
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
4.00
3.95 -50
0 TA (C)
50
100
TK71145
OUTPUT VOLTAGE VS. OUTPUT CURRENT 4.55
QUIESCENT CURRENT VS. INPUT VOLTAGE 2 150 IOUT = 0 mA
IOUT (mA)
OUTPUT CURRENT VS. AMBIENT TEMPERATURE
VOUT (V)
IQ (mA)
4.50
1
100
4.45 0
0
50 IOUT (mA) DROPOUT VOLTAGE VS. OUTPUT CURRENT 100
0
5 VIN (V)
10
50 -50
0 TA (C)
50
100
SHORT CIRCUIT PROTECTION 5 4
4.55
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE
500 400
VDROP (mV)
VOUT (V)
300 200 100 0 0 50 IOUT (mA) 100
3 2 1 0 0 100 IOUT (mA) 200
VOUT (V)
4.50
4.45 -50
0 TA (C)
50
100
Page 12
July 2000 TOKO, Inc.
TK711XX
TYPICAL PERFORMANCE CHARACTERISTICS (CONT.)
TA = 25 C, unless otherwise specified.
QUIESCENT CURRENT VS. INPUT VOLTAGE 2 150 IOUT = 0 mA
IOUT (mA)
VOUT (V)
TK71150
OUTPUT VOLTAGE VS. OUTPUT CURRENT 5.05 OUTPUT CURRENT VS. AMBIENT TEMPERATURE
5.00
IQ (mA)
1
100
4.95 0
0 50 IOUT (mA) DROPOUT VOLTAGE VS. OUTPUT CURRENT 100 0 5 VIN (V) 10
50 -50
0 TA (C)
50
100
SHORT CIRCUIT PROTECTION
5.05
OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE
500
5
400
VDROP (mV) VOUT (V)
4 3 2 1 0
4.95 -50
300 200 100 0 0 50 IOUT (mA) 100
VOUT (V) 0 100 IOUT (mA) 200
5.00
0 TA (C)
50
100
July 2000 TOKO, Inc.
Page 13
TK711XX
DEFINITION AND EXPLANATION OF TECHNICAL TERMS
LINE REGULATION (LINE REG) Line regulation is the ability of the regulator to maintain a constant output voltage as the input voltage changes. LOAD REGULATION (LOAD REG) Load regulation is the ability of the regulator to maintain a constant output voltage as the load current changes. It is a pulsed measurement to minimize temperature effects. The load regulation is specified an output current step condition of 1 mA to 60 mA. QUIESCENT CURRENT (IQ) The quiescent current is the current which flows through the ground terminal under no load conditions (IOUT = 0 mA). GROUND CURRENT (IGND) Ground current is the current which flows through the ground pin(s). It is defined as IIN - IOUT, excluding ICONT. DROPOUT VOLTAGE (VDROP) This is a measure of how well the regulator performs as the input voltage decreases. The smaller the number, the further the input voltage can decrease before regulation problems occur. Nominal output voltage is first measured when VIN = VOUT + 1 at a chosen load current. When the output voltage has dropped 100 mV from the nominal, VIN - VO is the dropout voltage. This voltage is affected by load current and junction temperature. OUTPUT NOISE VOLTAGE This is the effective AC voltage that occurs on the output voltage under the condition where the input noise is low and with a given load, filter capacitor, and frequency range. THERMAL PROTECTION This is an internal feature which turns the regulator off when the junction temperature rises above 150 C. After the regulator turns off, the temperature drops and the regulator output turns back on. Under certain conditions, the output waveform may appear to be an oscillation as the output turns off and on and back again in succession. PACKAGE POWER DISSIPATION (PD) This is the power dissipation level at which the thermal sensor is activated. The IC contains an internal thermal sensor which monitors the junction temperature. When the junction temperature exceeds the monitor threshold of 150 C, the IC is shut down. The junction temperature rises as the difference between the input power (VIN x IIN) and the output power (VOUT x IOUT) increases. The rate of temperature rise is greatly affected by the mounting pad configuration on the PCB, the board material, and the ambient temperature. When the IC mounting has good thermal conductivity, the junction temperature will be low even if the power dissipation is great. When mounted on the mounting pad, the power dissipation of the TO-92 is increased to 500 mW. For operation at ambient temperatures over 25 C, the power dissipation of the TO92 device should be derated at 4.0 mW/C. To determine the power dissipation for shutdown when mounted, attach the device on the actual PCB and deliberately increase the output current (or raise the input voltage) until the thermal protection circuit is activated. Calculate the power dissipation of the device by subtracting the output power from the input power. These measurements should allow for the ambient temperature of the PCB. The value obtained from PD /(150 C - TA) is the derating factor. The PCB mounting pad should provide maximum thermal conductivity in order to maintain low device temperatures. As a general rule, the lower the temperature, the better the reliability of the device. The thermal resistance when mounted is expressed as follows:
Tj = 0jA x PD + TA For Toko ICs, the internal limit for junction temperature is 150 C. If the ambient temperature (TA) is 25 C, then: 150 C = 0jA x PD + 25 C 0jA = 125 C / PD PD is the value when the thermal sensor is activated. A simple way to determine PD is to calculate VIN x IIN when the output side is shorted. Input current gradually falls as temperature rises. You should use the value when thermal equilibrium is reached.
Page 14
July 2000 TOKO, Inc.
TK711XX
TERMS AND DEFINITIONS (CONT.)
The range of usable currents can also be found from the graph below.
(mW) PD 3
APPLICATION INFORMATION
INPUT/OUTPUT DECOUPLING CONSIDERATIONS CAPACITOR
DPD
6 4 5
25
50
75 TA (C)
150
Procedure: 1) 2) 3) 4) Find PD PD1 is taken to be PD x (~ 0.8 - 0.9) Plot PD1 against 25 C Connect PD1 to the point corresponding to the 150 C with a straight line. 5) In design, take a vertical line from the maximum operating temperature (e.g., 75 C) to the derating curve. 6) Read off the value of PD against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation, DPD. The maximum operating current is: IOUT = (DPD / (VIN(MAX) - VOUT)
1000 800 MOUNTED
PD (mW)
Voltage regulators require input and output decoupling capacitors. The required value of these capacitors vary with application. Capacitors made by different manufacturers can have different characteristics, particularly with regard to high frequencies and Equivalent Series Resistance (ESR) over temperature. The type of capacitor is also important. For example, a 4.7 F aluminum electrolytic may be required for a certain application. If a tantalum capacitor is used, a lower value of 2.2 F would be adequate. It is important to consider the temperature characteristics of the decoupling capacitors. While Toko regulators are designed to operate as low as -40 C, many capacitors will not operate properly at this temperature. The capacitance of aluminum electrolytic capacitors may decrease to 0 at low temperatures. This may cause oscillation on the output of the regulator since some capacitance is required to guarantee stability. Thus, it is important to consider the characteristics of the capacitor over temperature when selecting decoupling capacitors. The ESR is another important parameter. The ESR will increase with temperature but low ESR capacitors are often larger and more costly. In general, tantalum capacitors offer lower ESR than aluminum electrolytic, but new low ESR aluminum electrolytic capacitors are now available from several manufacturers. Usually a bench test is sufficient to determine the minimum capacitance required for a particular application. After taking thermal characteristics and tolerance into account, the minimum capacitance value should be approximately two times this value. The recommended minimum capacitance for the TK711XXN is 2.1 F for a tantalum capacitor or 3.3 F for an aluminum electrolytic. Please note that linear regulators with a low dropout voltage have high internal loop gains which require care in guarding against oscillation caused by insufficient decoupling capacitance. The use of high quality decoupling capacitors suited for your application will guarantee proper operation of the circuit. Pay attention to temperature characteristics of the capacitor, especially the increase of ESR and decrease of capacitance in low temperatures. Oscillation, reduction of ripple rejection and increased noise may occur in some cases if the proper capacitor is not used. An output capacitor more than 1.0 F is required to maintain stability. The standard test condition is 3.3 F (TA = 25 C).
600 400 200 0 0 50 TA (C) 100 150
TO-92 POWER DISSIPATION CURVE July 2000 TOKO, Inc. Page 15
TK711XX
PACKAGE OUTLINE
Marking Information
4.8 (1.4) 3.8
TO-92
Marking
Lot Number
TK71120 TK71125 TK71130 TK71133 TK71135 TK71140 TK71145 TK71150
Marking 120 125 130 133 135 140 145 150
0.25 0.45
+0.15 -0.05
M 0.45 e 1.27 1 2 3
+0.15 -0.05
e 1.27
13.5
+ 0.5
5.0
Dimensions are shown in millimeters Tolerance: x.x = 0.2 mm (unless otherwise specified)
R2.4
Toko America, Inc. Headquarters 1250 Feehanville Drive, Mount Prospect, Illinois 60056 Tel: (847) 297-0070 Fax: (847) 699-7864
TOKO AMERICA REGIONAL OFFICES
Midwest Regional Office Toko America, Inc. 1250 Feehanville Drive Mount Prospect, IL 60056 Tel: (847) 297-0070 Fax: (847) 699-7864 Western Regional Office Toko America, Inc. 2480 North First Street , Suite 260 San Jose, CA 95131 Tel: (408) 432-8281 Fax: (408) 943-9790 Eastern Regional Office Toko America, Inc. 107 Mill Plain Road Danbury, CT 06811 Tel: (203) 748-6871 Fax: (203) 797-1223 Semiconductor Technical Support Toko Design Center 4755 Forge Road Colorado Springs, CO 80907 Tel: (719) 528-2200 Fax: (719) 528-2375
Visit our Internet site at http://www.tokoam.com
The information furnished by TOKO, Inc. is believed to be accurate and reliable. However, TOKO reserves the right to make changes or improvements in the design, specification or manufacture of its products without further notice. TOKO does not assume any liability arising from the application or use of any product or circuit described herein, nor for any infringements of patents or other rights of third parties which may result from the use of its products. No license is granted by implication or otherwise under any patent or patent rights of TOKO, Inc.
Page 16
(c) 1999 Toko, Inc. All Rights Reserved IC-160-TK711XX 0798O0.0K
July 2000 TOKO, Inc.
Printed in the USA


▲Up To Search▲   

 
Price & Availability of TK711XX

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X